March 28, 2012

Petite Particle Accelerator: A Proton Gun For Killing Tumors

By Spencer Woodman



Since 1990, doctors have been regularly treating cancer patients using proton beams, which work similarly to radiation. Proton therapy is more precise, however, causing less harm to healthy surrounding tissues. Unfortunately, generating a proton beam requires a particle-accelerator facility that’s the size of an airplane hangar and costs more than $100 million to build. Thus, proton-beam therapy remains a rarity, with only 37 working facilities worldwide, 10 of which are located in the U.S. Just 10,000 people were treated last year, less than 5 percent of suitable patients.

Now scientists at the Compact Particle Acceleration Corporation in Livermore, California, are developing a 13-foot-long particle accelerator that costs about $30 million. Most accelerators use large magnets to generate the electromagnetic field that pushes charged particles. The magnets require 10-foot-thick concrete shielding and bulky hardware. CPAC’s prototype creates the electromagnetic field with electric lines, which don’t require massive shielding or large additional equipment. The new accelerator could be commercially available as soon as 2015. (The numbers below will match you up to the location in the picture above.)

1. PROTON BEAM
Magnets in the kicker pull positively charged protons from hydrogen plasma made by a duoplasmatron. A deflecting magnet collects the stream into proton bundles, which then enter the injector, where a microwave field speeds the particles toward the acceleration chamber at up to five million mph.

2. LASER
At nearly the same time, a laser fires a light pulse, which splits into fiber-optic cables of various lengths.

3. ACCELERATION CHAMBER
As a bundle of protons enters the acceleration chamber, a light pulse hits the chamber’s first pair of electric lines, triggering the release of electrons. The resulting electromagnetic field propels the proton bundle forward. The light pulse triggers the electric lines in a wave, sequentially accelerating the proton bundle until it’s traveling at 335 million mph—or about half the speed of light.

4. CLOCK
The entire process is controlled by a clock, which directs magnets to turn on or off and the laser to fire.

5. ROBOTIC CHAIR
Moving a patient is easier than moving a 13-foot-long particle accelerator. A robotic chair maneuvers a strapped-in patient in front of the proton beam to target a tumor from different angles.
©

March 23, 2012

Varian exhibits radiotherapy hardware and software at ChinaMed

BEIJING, 21 March 2012 – Varian Medical Systems, Inc. (NYSE: VAR), a leading manufacturer of medical devices for treating cancer with radiotherapy, will exhibit the full spectrum of the company's advanced clinical capabilities and technologies at the 24th International Medical Instruments and Equipment Exhibition (ChinaMed), taking place here later this month. Varian will also co-sponsor a day-long "Advances in Radiation Oncology" symposium, and will present information about recent advances in proton radiotherapy.

Displays in Varian's booth will incorporate information about the company's products, including:

• TrueBeam™ and Trilogy® medical linear accelerators. These sophisticated machines accelerate electrons to nearly the speed of light and crash them into a metal target to produce the high-energy X-rays used to treat tumors. They also incorporate precise beam shaping devices to limit exposure of surrounding healthy tissues during treatment, as well as image-guidance tools, which are used to target tumors more precisely. A Trilogy machine will be available for viewing in the Varian booth; visitors can also obtain information about TrueBeam and other Varian accelerators.
• RapidArc® radiotherapy technology, which makes it possible to deliver precise treatments very quickly, in just a few minutes per treatment.
• Eclipse™ treatment planning, a powerful computer program that optimizes a treatment plan based on a doctor's prescription and a patient's diagnostic images, so that the radiotherapy beam can be focused on the tumor and nearby healthy tissues can be avoided to the greatest extent possible.
• ARIA™ oncology information system, a sophisticated information management program that streamlines clinical processes, improves workflow, eliminates paper charts, and automates many aspects of managing complex radiotherapy treatments.
• Brachytherapy solutions for treating cancer by placing tiny radiation sources directly into or next to the area requiring treatment. This is another way for clinicians to deliver a high dose with minimal impact on surrounding healthy tissues.
• PaxPower™ X-ray tubes and PaxScan® digital image detectors for use in fluoroscopy, special procedures, mammography and cone-beam CT imaging. "Our X-ray tubes and flat panel detectors were designed to work together to improve image quality, increase patient throughput and reduce overall cost per procedure," said Hsiao-Li Pan, country manager for Varian's X-Ray Products Beijing group.
"Advances in Radiation Oncology" Symposium

In addition, Varian is among the sponsors of an all-day "Advances in Radiation Oncology" symposium taking place on March 24. Rolf Staehelin, Varian's director of international marketing for Europe, the Middle East, and the Asia Pacific regions, is scheduled to talk about recent advances in proton radiotherapy, a method of treating cancer that uses beams of protons to deliver more targeted, precise doses than conventional photon beams. The symposium was jointly organized by the Radiation Therapy Society of the People's Liberation Army, the Chinese Society of Radiation Oncology (CSTRO), the Chinese Society of Medical Physicists (CSMP), and ChinaMed.

"This will be Varian's 6th year exhibiting at ChinaMed, and we're pleased to showcase the company's world-class solutions at this very important gathering of radiation oncology professionals," said Staehelin. "We are also delighted to support the major Chinese radiation oncology professional associations, in their efforts to highlight clinical developments in the field and to focus attention on best practices from around the world."
ABOUT VARIAN MEDICAL SYSTEMS

Varian Medical Systems, Inc., of Palo Alto, California, is the world's leading manufacturer of medical devices and software for treating cancer and other medical conditions with radiotherapy, radiosurgery, proton therapy, and brachytherapy. The company supplies informatics software for managing comprehensive cancer clinics, radiotherapy centers and medical oncology practices. Varian is a premier supplier of tubes and digital detectors for X- ray imaging in medical, scientific, and industrial applications and also supplies X-ray imaging products for cargo screening and industrial inspection. Varian Medical Systems employs approximately 5,900 people who are located at manufacturing sites in North America, Europe, and China and approximately 70 sales and support offices around the world. The company's center in Beijing encompasses oncology equipment manufacturing operations, an educational center for radiotherapy clinical professionals, a customer service center, and X-ray Products assembly and service. For more information, visit http://www.varian.com
©

Elekta reinforces strong China-Asia presence at ChinaMed

BEIJING, 21 March 2012 – At the 24th International Medical Instruments & Equipment (ChinaMed) Exhibition, March 23-25 at the China National Convention Center in Beijing, Elekta (booth #3A001) will showcase its comprehensive range of oncology solutions and demonstrate its preeminence as the dominant provider of radiation therapy technology in China.

In the last five years, Elekta has concentrated resources to support China’s unprecedented initiatives to modernize and improve access to cancer management technology. This has resulted in a number of firsts and milestones for both Elekta and Chinese medical centers.

• This month, Elekta BMEI shipped its 100th Elekta Compact™ treatment system, equipped with the 2,000th Precise Table manufactured by Elekta. The 100th Elekta Compact will be will be shipped to Fujian Province Tumor Hospital.
• Release of MOSAIQ® in the Chinese Language, currently in use at Sun Yat-sen University Cancer Center. MOSAIQ is Elekta’s dedicated electronic oncology information system.
• Installation of China’s first Leksell Gamma Knife® Perfexion™ radiosurgery systems at Zheijiang University School of Medicine and Beijing Tiantan Hospital. Shanghai Gamma Knife Hospital also plans to install a Perfexion system later this year.
• First order for Elekta Axesse™, an advanced 4D stereotactic treatment system designed to facilitate highly targeted stereotactic body radiation therapy (SBRT) and radiosurgery anywhere in the body recently was placed.

Elekta also has enabled users of Precise Treatment System™ in China to increase treatment delivery speed with the release of VMAT (Volumetric Modulated Arc Therapy). VMAT is an advanced radiation therapy technique that delivers treatment in one or more continuous high-speed arcs around the patient, enabling the radiation dose to precisely conform to a tumor by modulating the radiation beam’s intensity.

Precise Treatment System is a versatile therapy platform offering treatments with photons or electrons, traditional static delivery, IGRT or VMAT.

“During 2010-2011, Elekta solutions accounted for nearly half of new orders in the Chinese market, making Elekta the number one provider in the country,” says Gilbert Wai, Executive Vice President, Asia Pacific. “Our ongoing mission is to help meet China’s demand for comprehensive cancer management solutions as this nation’s healthcare providers strive to offer the best services for its citizens."

Elekta’s comprehensive radiation therapy solutions also will be on display (booth #H1-E36) at the Spring 2012 China International Medical Equipment Fair (CMEF), April 17-20 at the Shenzhen Convention and Exhibition Centre in Shenzhen.
About Elekta

Elekta is a human care company pioneering significant innovations and clinical solutions for treating cancer and brain disorders. The company develops sophisticated, state-of-the-art tools and treatment planning systems for radiation therapy, radiosurgery and brachytherapy, as well as workflow enhancing software systems across the spectrum of cancer care. Stretching the boundaries of science and technology, providing intelligent and resource-efficient solutions that offer confidence to both healthcare providers and patients, Elekta aims to improve, prolong and even save patient lives.

Today, Elekta solutions in oncology and neurosurgery are used in over 6,000 hospitals worldwide. Elekta employs around 3,300 employees globally. The corporate headquarters is located in Stockholm, Sweden, and the company is listed on the Nordic Exchange under the ticker EKTAb. Website: www.elekta.com.
©

March 8, 2012

Varian Medical Systems to Equip New Proton Treatment Center in Russia

PALO ALTO, Calif., Feb. 16, 2012 /PRNewswire/ -- Varian Medical Systems (NYSE: VAR) today announced it has booked an order to equip a new two-room proton therapy center at the PTC St. Petersburg Center of Nuclear Medicine of the International Institute of Biological Systems in Russia. The equipment order was placed by Owen Kane Oncology Equipment, Inc. in New York which is supplying the system to the center in St. Petersburg.

Under the purchase agreement Varian will equip the new center with a ProBeam™ system as well as its ARIA information management and Eclipse treatment planning software products. The equipment order is valued at about $50 million not including service. Equipment delivery and installation is expected to commence in 2014 and patient treatments are scheduled to begin in 2016.

"We're very pleased to be able to bring Varian's cutting edge, clinically advanced and reliable technology to patients," said Dr. Arkadi Stolpner, President of the International Institute of Biological Systems Diagnostic and Treatment Center. "Our aim in purchasing the Varian ProBeam system is to help us meet our mission of saving lives."

"We are honored to be a part of a very important project that will help to make the most advanced proton therapy available to the people of Russia," said Tim Guertin, President and CEO of Varian Medical Systems. "The ProBeam system combines Varian's unmatched technology for intensity modulated proton therapy with advanced imaging, treatment planning, and information management capabilities that have been developed on the basis of decades of experience in clinical support. This is another exciting step forward for proton therapy."

"We selected Varian to supply our Proton Beam technology because we have confidence in their ability to deliver a quality product on a timely basis," said Philip Jacobus, President of Owen Kane Oncology Equipment. "We operate a Varian TrueBeam™ linear accelerator and Varian has proven to us that meeting the needs of the customer as well as the patient is a priority to them."

Proton therapy makes it possible to treat certain types of cancer more precisely and with potentially fewer side effects than with conventional radiation therapy. With proton therapy, the risk of damage to healthy tissues is reduced. The method can be applied for many of the most common types of cancer and offers advantages when treating tumors close to radiosensitive tissues. In pediatric patients the risk of developing a new, radiation-induced cancer later in life can be reduced.

Varian is currently installing and commissioning its ProBeam system at the Scripps Proton Center near San Diego. The company announced in January that it has booked an order to equip the Saudi Particle Therapy Center at the King Fahd Medical Center in Riyadh, Saudi Arabia. Varian also has been selected to provide equipment for new proton therapy centers at the University of Maryland and in Mestre, Italy. It has been identified as the preferred provider for a new center at Emory University near Atlanta.

About Varian Medical Systems
Varian Medical Systems, Inc., of Palo Alto, California, is the world's leading manufacturer of medical devices and software for treating cancer and other medical conditions with radiotherapy, radiosurgery, and brachytherapy. The company supplies informatics software for managing comprehensive cancer clinics, radiotherapy centers and medical oncology practices. Varian is a premier supplier of tubes and digital detectors for X-ray imaging in medical, scientific, and industrial applications and also supplies X-ray imaging products for cargo screening and industrial inspection. Varian Medical Systems employs approximately 5,700 people who are located at manufacturing sites in North America, Europe, and China and approximately 70 sales and support offices around the world. For more information, visit http://www.varian.com or follow us on Twitter.

Forward-Looking Statements
Except for historical information, this news release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Statements concerning industry outlook, including growth drivers; the company's future business, including orders, revenues, backlog, or earnings growth; market acceptance of or transition to new products or technology for proton therapy, and any statements using the terms "can," "will," "scheduled," "expected," "goal," "mission," "possible," or similar statements are forward-looking statements that involve risks and uncertainties that could cause the company's actual results to differ materially from those anticipated. Such risks and uncertainties include the effect of economic conditions; currency exchange rates and tax rates; demand for the company's products; the company's ability to develop, commercialize, and deploy new products; the company's ability to meet Food and Drug Administration (FDA) and other regulatory requirements for product clearances or to comply with FDA and other regulatory regulations or procedures; changes in the regulatory environment, including with respect to FDA requirements; challenges associated with the successful commercialization of the company's particle therapy business; the company's reliance on sole or limited-source suppliers; the company's ability to maintain or increase margins; and the other risks listed from time to time in the company's filings with the Securities and Exchange Commission, which by this reference are incorporated herein. The company assumes no obligation to update or revise the forward-looking statements in this release because of new information, future events, or otherwise.

FOR INFORMATION CONTACT:
Spencer Sias (650) 424-5782
spencer.sias@varian.com

SOURCE Varian Medical Systems
©

March 6, 2012

Injector simplifies cancer-fighting synchrotron

High-energy radiation is a common treatment for cancer patients, helping to shrink tumors and kill cancer cells. Compared to conventional X-ray and gamma ray therapy, particle-based radiotherapy has been favored for its ability to intensely irradiate affected sites with minimal side effects.



Large permanent magnets or electromagnets are typically responsible for the powerful, focused proton beams produced by the linear accelerators used for this therapy, but there are limits to what these proton injectors can accomplish. Mitsubishi Electric Corp., Amagasaki, Japan, has developed a more effective solution with its Compact Injection Accelerator for Proton Therapy System, which can generate the required 10 mA proton beams at 7 MeV prior to delivering the power to synchrotron.

Mitsubishi greatly simplified the injector's post-linear accelerator electrode architecture, eliminating the need for magnetic fields for focusing. This supplies a lower accuracy requirement for the electrodes, which leads to better reliability throughout the entire system. Additionally, the conventional power distributor setup of two radio frequency (RF) sources—with phase adjustment—was reduced to just one RF source.

The result is a less expensive but more reliable solution that can be said to contribute to the higher feasibility of next-generation cancer treatments, as well as atomic reactor needs.

Technology
Accelerator for proton therapy

Developers
Mitsubishi Electric Corp.

The Compact Injection Accelerator for Proton Therapy System Development Team
Kazuo Yamamoto, Principal Developer
Hiromitsu Inoue
Takahisa Nagayama
Sadahiro Kawasaki
Hirofumi Tanaka
Satoshi Ueda
©

Как дела у Балакина?

17 Февраля 2012 г.


«Как дела у Балакина?» -

- этот вопрос задают в нашем городе, да и не только, уже несколько лет. Проблема высокотехнологичной и эффективной борьбы с раком по-прежнему одна из важнейших, люди ждут и надеются.

Но прошла уже пора первых бравурных пресс-релизов о том, что «в подмосковном Протвино под руководством известного учёного - ускорительщика, члена-корреспондента РАН В.Е. Балакина создаётся уникальный по своим параметрам и дешевизне (что важно для серийного производства) ускоритель протонов для медицины». Именно в таких выражениях писали такие авторитетные издания, как «Российская» и «Независимая» газеты, вездесущий «МК», «Известия». Не раз выступали областная и местная пресса, были показаны телесюжеты на каналах разных уровней, вплоть до всероссийских «Вестей», ведётся некоторая полемика в российском сегменте Интернета. Но если раньше эти сюжеты настраивали на оптимистический лад, то в последние пару лет всё чаще сквозят тревога и недоумение – как получается, что единственный в своём роде инновационный проект отечественного медицинского ускорителя до сих пор не реализован в том виде, в котором его ждут многие тысячи, десятки тысяч возможных пациентов?



Между тем усилия протвинских энтузиастов, объединенных для производственных целей в ЗАО «ПРОТОМ» именно для осуществления «прорыва» в протонной онкотерапии, замечены и поддержаны за рубежом. Так, в дополнение к двум создающимся в Московской области центрам протонной терапии (в Протвино построено здание, ускоритель работает, ведутся работы по наладке медицинского оборудования и сертификации изделия в целом; в Пущино построено здание, ускоритель готовится к переезду на штатное место) аналогичный протвинскому медицинский центр готовится к эксплуатации в Словакии (г. Ружомберок), в США после годичных испытаний в Бостоне на базе MIT (Массачусетский технологический институт) ускоритель одобрен к установке в специально создаваемом терапевтическом центре в г. Флинт, штат Мичиган. Есть предпосылки полагать, что после сертификации по строгим американским медицинским стандартам ускоритель Балакина будет рекомендован к тиражированию и массовому применению в США намного раньше, чем это произойдёт на его родине. Ибо работы в России сильно сдерживаются отсутствием финансирования, возникшем буквально «на финише» долгого и трудного пути более чем в десятилетие. Это «торможение ускорителя» носит привычный у нас характер: на пути научно-технического прогресса и модернизации нерушимо стоят монополия на «единственно правильную точку зрения» и бюрократическая машина.

Вот выдержки из недавнего официального документа, полученного В.Е. Балакиным в ответ на очередную просьбу к правительственным органам поддержать финальный этап многолетней работы по «доводке до кондиций» первого отечественного медицинского протонного ускорителя:

«Уважаемый Владимир Егорович!

В соответствии с регламентом, установленным Порядком рассмотрения и оценки проектов по направлению «Медицинская техника и фармацевтика» для представления на рассмотрение Комиссии при Президенте Российской Федерации по модернизации и технологическому развитию экономики России, Ваш проект «Протонный терапевтический комплекс» ЗАО «ПРОТОМ» был направлен на отзыв в Министерство здравоохранения и социального развития Российской Федерации.

На основании поступившего отзыва Министерства здравоохранения и социального развития Российской Федерации сообщаем следующее.

Представленный авторами проект является импортозамещающим и результатом предполагает создание протонного терапевтического комплекса на основе малогабаритного протонного ускорителя для лечения онкологических заболеваний.

Как отмечают эксперты, в отличие от традиционной лучевой терапии, при которой энергия пучка равномерно рассеивается по мере прохождения через ткани, пучок протонов переносит свою максимальную энергию в точно заданную область, причиняя минимальный ущерб здоровым тканям вокруг опухоли. Таким образом, можно подавать высокую конформную дозу облучения в место, где располагается опухоль, используя точно нацеленный луч, перемещаемый в трех плоскостях.

Основными преимуществами клинического применения протонной терапии перед традиционной лучевой терапией являются:

- возможность прецизионного подведения дозы облучения к опухоли;

- отсутствие дозы на выходе при увеличении дозы (в пределах терапевтического окна);

- снижение вероятности развития побочных эффектов в окружающих здоровых тканях;

- обеспечение долгосрочной безрецидивной выживаемости за счет высокой онкологической эффективностью протонной терапии;

- улучшение качества жизни пациентов после проведения амбулаторного курса лечения протонами благодаря неинвазивности и безболезненности терапии.

В качестве положительных сторон проекта следует отметить:

- наличие у разработчика собственных производственных мощностей;

- значительно более низкую заявленную стоимость готового образца по сравнению с зарубежными аналогами.

По заявлению авторов проекта, к настоящему времени изготовлено пять промышленных образцов ускорителя, разработка технологии облучения находится на завершающей стадии...»


Замечательно и кратко изложена суть инновации - именно об этих выдающихся свойствах ускорителя многократно говорил В.Е. Балакин в своих опубликованных и изустных декларациях. Пишу это с уверенностью, ибо всё это повторил, а многое и продемонстрировал «в натуре» Владимир Егорович во время нашей полуторачасовой встречи в Протвинском центре протонной терапии, состоявшейся 2 февраля. Здесь не толпились пациенты – пока что ускоритель вполне успешно продемонстрировал свои возможности только на подопытных мышках. Что интересно, первая серия биологических опытов проводилась ещё около 3 лет тому назад, так что была возможность пронаблюдать реальную ремиссию биологических объектов. Все 10 облучённых пучком ускорителя самцов с привитой в нижней части туловища опухолью не только выжили, но и сохранили свои репродуктивные свойства, более того – их потомство развивалось и прожило отпущенный природой срок нормально. Собственно, об этом и говорит одна из приведенных выше цитат. Но…

Но у приведённого выше документа есть и продолжение, которое входит в явное противоречие с оптимистическим его началом:

«…Однако, по данным экспертов, в настоящее время существует только опытный образец протонного ускорителя, проведение технических и медицинских испытаний которого не представляется возможным ввиду того, что авторами проекта не решен ряд существенных вопросов: позиционирование пациента, верификация мишени облучения, дозиметрический контроль пучка, расчет дозиметрического плана облучения.

В качестве отрицательных сторон проекта следует также отметить:

- отсутствие сведений о закреплении прав на результаты интеллектуальной

собственности по тематике проекта;

- отсутствие финансово-экономического обоснования реализации проекта;

- отсутствие отзывов ведущих специалистов по направлению.

Эксперты также ставят под сомнение сроки завершения проекта, учитывая

масштабность задач, заявленных авторами.

Минздравсоцразвития России считает, что проект «Протонный терапевтический комплекс» (ЗАО «ПРОТОМ») требует существенной доработки с учетом представленных замечаний».

Подписал этот документ в середине декабря 2011 года заместитель директора Департамента химико-технологического комплекса и биоинженерных технологий Министерство промышленности и торговли Российской Федерации С.В. Разумов. Разумеется, это не его личное мнение, а некая «точка зрения», выработанная неназванными экспертами из не представленных в документе инстанций или организаций. А ведь это очень важно – эксперт может представлять организацию, не заинтересованную в появлении в отечественной медицинской физике нового конкурента, тем более - предлагающего прорывное направление. Отсюда – и появление поверхностных, а то и недостоверных отрицательных экспертных оценок проекта, авторы которого действительно ставят перед собой масштабную задачу – сделать протонную терапию доступной для населения. Лежащие в основе физических принципов работы ускорителя Балакина инновационные предложения (ноу-хау) на самом деле защищены десятками патентов, а также демонстрацией его работы любым авторитетным экспертным комиссиям, в том числе уже состоявшимся - с участием главного онколога Минздрава России академика РАМН В.И. Чиссова, вице-президента РАН академика Г.А. Месяца, и других.

В нашей беседе Владимир Егорович не только опроверг вышеприведённые «экспертные сомнения», но и повторил фразу, уже не раз звучавшую в схожих ситуациях, связанных с внедрением в нашей стране прогрессивных, а самое главное - импортозамещающих инновационных технологий:

«Знакомясь с деталями нашего проекта, мне в разных инстанциях вначале всегда говорят, что это очень здорово, но едва узнав, что он будет стоить гораздо дешевле, чем по импорту - сразу теряли интерес. Почему-то главным соображением является чудовищное желание привлечь во много раз более крупные средства на сопоставимый, а то и устаревший зарубежный проект».

Вот здесь самое время назвать цифры затрат. Расходы на изготовленныйсилами ЗАО «ПРОТОМ» комплекс медицинского протонного ускорителя, включающего пятиметровый синхротрон и всю необходимую инфраструктуру, составляют около 12 млн. долларов США (в среднем по опыту создания пяти таких комплексов). Создающийся в США медицинский центр на основе ускорителя Балакина в Мичигане будет стоить около 50 млн. долларов – но с учётом весьма развитой медицинской инфраструктуры, включающей две сложных системы «гантри», которые обеспечивают ротацию пучка вокруг пациента.

А вот, к примеру, обсуждаемый сейчас в Москве чешский инвестиционный проект по строительству столичного Центра протонной терапии на основе бельгийского циклотрона фирмы IBA «тянет» уже на 150 млн. евро. Такого же порядка расходы заложены и в реализуемый c недавних пор в Димитровограде проект (также с использованием циклотрона от IBA). Как с горечью заметил В.Е. Балакин, «за эти деньги можно было бы сделать для страны несколько десятков медицинских синхротронов».

А ведь протонные медицинские центры нужны, по сути, в каждом из регионов Российской Федерации. Пока же об этом можно только мечтать. И привычно ругать Америку, которая фактически оплачивает исследования и разработки команды Балакина, ведущиеся для появления качественной противораковой медицинской техники сначала в Протвино и Пущино, а затем - во всей России…

Опубликовано: "Протвинский курьер", 15 февраля 2012 г., Агентство Новостей Подмосковья
©

St. Jude Children's Research Hospital Selects Hitachi to Supply and Install Proton Beam Therapy System

Tokyo, February 21, 2012 — Hitachi, Ltd. (TSE:6501/NYSE:HIT) today announced that it has entered into an agreement with St. Jude Children’s Research Hospital to provide its proton beam therapy (PBT) system. This next-generation technology has spot scanning capability for treating certain forms of cancer. The agreement includes PBT system maintenance for 10 years following completion of the systems’ installation.

The system will be installed at St. Jude Children’s Research Hospital in Memphis, TN. There will be three treatment rooms, two with rotating gantry systems and one with a fixed horizontal beam. The installed PBT system will be a compact design with a foot print that is approximately 40 percent smaller than that of conventional systems. Construction for facilities has already begun and treatment using the proton therapy system is expected to be offered in the fall of 2015.

Dr. William Evans, Chief Executive Officer of St. Jude Children’s Research Hospital, said “By bringing the technology to our campus, we will become the first center in the country offering this cutting-edge therapy solely for the purpose of treating children with brain tumors and other pediatric cancers. Currently, we ensure our patients needing this therapy receive it through collaboration with other institutions, but having the technology available here at St. Jude will enable a new level of service and convenience for our patients. In addition, it takes advantage of recent advances in the technology and will allow integration with our cutting-edge research programs.”

Tatsuro Ishizuka, Vice President and Executive Officer, President & CEO of Power Systems Company, Hitachi, Ltd. said, "It is an honor to have our technology recognized and to be selected to provide our PBT system. We are especially proud of the fact that our system has been selected by the premier pediatric oncology hospital and will be dedicated to the treatment of children. Hitachi pioneered proton beam therapy technology in Japan and devoted research and development resources to improve this technology over the past 20 years. Hitachi’s expertise in accelerators, irradiation and control systems played a key role in the development and refinement of the PBT system. Hitachi will continue to contribute to improving treatment outcomes for people with cancer by promoting PBT business globally.”

PBT is an advanced type of radiation therapy used to treat adults and children with cancer. Protons, the atomic nucleus of hydrogen, are accelerated to high speeds and focused to deposit their energy in tumors. PBT has been shown to improve the quality of life for cancer patients since patients experience less radiation exposure to normal tissues and fewer side effects. In most cases, adults and children can continue with their normal daily activities while undergoing out-patient treatment.

The spot scanning technology designed for the St. Jude facility became feasible by advancing the uniform quality beam extraction and control technology from the accelerator which includes three primary benefits: (1) more accurate irradiation which can reduce the side effects to the healthy tissues surrounding the tumor compared with conventional double scattering irradiation; (2) patient-specific collimators and boluses are not necessary; and (3) proton beam usage factor is high, reducing unnecessary secondary radiation.

Since the 1990’s, interest in proton beam therapy as a form of cancer treatment has been rapidly increasing in the U.S. Given the growing demand for more advanced and less detrimental treatment modalities, interest in proton therapy is on the rise, with more and more hospitals and cancer treatment facilities venturing into this area. In December 2007, for the first time in the U.S., Hitachi cleared the FDA Premarket Notification Special 510(k) for spot scanning irradiation technology.

About St. Jude Children’s Research Hospital

Since opening 50 years ago, St. Jude Children’s Research Hospital has changed the way the world treats childhood cancer and other life-threatening diseases. No family ever pays St. Jude for the care their child receives and, for every child treated here, thousands more have been saved worldwide through St. Jude discoveries. The hospital has played a pivotal role in pushing U.S. pediatric cancer survival rates from 20 to 80 percent overall, and is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. It is also a leader in the research and treatment of blood disorders and infectious diseases in children. St. Jude was founded by the late entertainer Danny Thomas, who believed that no child should die in the dawn of life. Join that mission by visiting www.stjude.org or following us on www.facebook.com/stjude. Follow us on Twitter @StJudeResearch.

About Hitachi, Ltd.

Hitachi, Ltd., (NYSE: HIT / TSE: 6501), headquartered in Tokyo, Japan, is a leading global electronics company with approximately 360,000 employees worldwide. Fiscal 2010 (ended March 31, 2011) consolidated revenues totaled 9,315 billion yen ($112.2 billion). Hitachi will focus more than ever on the Social Innovation Business, which includes information and telecommunication systems, power systems, environmental, industrial and transportation systems, and social and urban systems, as well as the sophisticated materials and key devices that support them. For more information on Hitachi, please visit the company's website at www.hitachi.com.

Press Contacts
St. Jude Media Relations Contacts

Judith Black

(desk) 901-595-2434

(cell) 901-216-1188

judith.black@stjude.org

Carrie Strehlau

(desk) 901-595-2295

(cell) 901-297-9875

carrie.strehlau@stjude.org
Hitachi, Ltd.
Japan

Yuki Maeda

Hitachi, Ltd.

+81-3-5208-9324

yuki.maeda.sy@hitachi.com
US

Mickey Takeuchi

Hitachi America, Ltd.

+1-914-333-2987

Masayuki.Takeuchi@hal.hitachi.com
©

Best Theratronics to manufacture cyclotrons for medical isotope production

OTTAWA, ONTARIO, CANADA, 1 March 2012 – Best Theratronics Ltd [BTL] plans to address the worldwide medical isotope shortage by manufacturing a range of cyclotrons for the production of diagnostic and therapeutic medical isotopes. BTL will enter into partnerships with hospitals, clinics, medical and research institutions and distributors to supply isotopes as needed and at a reasonable cost.

Drawing on more than 50 years in medical equipment manufacturing, this innovative new product line offers a cost-effective alternative to both short- and long-lived medical isotopes.

A cyclotron uses a combination of magnets and radio frequency electric fields to accelerate ions to velocities high enough to create isotopes. BTL has a unique cost-effective technology to manufacture five types of cyclotrons: 14 MeV (B14), 25 MeV (B25), 25 MeV upgradable to 35 MeV (B25u), 35 MeV (B35) and 70MeV (B70). These cyclotrons will focus on isotopes used in Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and Therapy by virtue of their respective energies.

CYCLOTRONS FOR SPECIFIC NEEDS
Systems for Technetium-99m (Tc99m) Direct Production

B14 for Tc99m Radioisotopes – Tc99m is an important radiochemical that is used in more than 90% of radiodiagnostic procedures. TeamBest has developed a cyclotron based production system for the delivery of Tc99m . The B14 can produce Tc99m using a TeamBest target and processing system. The high intensity of the cyclotron (400 micro-amperes) allows production runs to supply large urban centers with an adequate supply of Tc99m .

B14 for PET Isotopes – The B14 Cyclotron is designed for local and regional use to generate radioisotopes with short half lives. Its energy is selected to be optimum for PET radioisotopes such as Fluorine-18 (for FDG), Nitrogen-13 (for Ammonia), and Carbon-11 (for Raclopride and other neuroreceptor agents). The energy of the B14 allows the generation of other PET agents such as Copper-64 and Iodine-124.

B25/B35 for SPECT and Generator Radioisotopes – The B25 and B35 Cyclotrons are designed for the production of single photon emitting radioisotopes used in SPECT such as Iodine-123, and Thallium-201. The selection of the cyclotron within this energy region and beam intensity is dependent upon the user’s needs. In particular, a user may start with a B25 configuration and upgrade the accelerator and facility to a B35 when the need arises. This provides a low startup cost and the option for future enhancements as the required throughput demand increases.The B35 is capable of creating generator systems for both PET radioisotopes, such as Gallium-68, and radio therapeutic isotopes, such as Cesium-131. The B35 is a high intensity cyclotron whose radioisotope production capability can meet the demand on a national and international scale.

B70 for Generator and Therapy Radioisotopes – The B70 Cyclotron is designed to produce generator radioisotopes for PET, such as Strontium-82, and large quantities of therapeutic isotopes, such as Copper-67. The combination of high energy and high intensity provides adequate quantities of medical radioisotopes that can only be produced at 70 MeV.

NEW RADIOISOTOPE PROCESSING SYSTEMS

High Yield and Purity PET Production – A full suite of PET targets and processing systems have been developed by TeamBest. Fluorine-18 targets for the TeamBest Systems are designed for maximum power use, with chemical passivation of surfaces to eliminate contamination arising from the harsh conditions during production. Carbon-11 targets are designed to eliminate any source of naturally occurring carbon that would degrade the diagnostic capability of the radioisotope. Nitrogen-13 targets are designed to deliver labeled Ammonia in a streamlined process, making the imaging compound more suitable for diagnostic cardiology procedures.

DIRECT PRODUCTION OF Tc99m SYSTEMS

This unique processing system, available from TeamBest, can be used with Best Theratronics’ B14 and B25 Cyclotrons or other suppliers’ cyclotrons to produce enough Tc99m to adequately meet the clinical needs of large urban centers. The long term supply of Tc99m for nuclear medicine is no longer dependent on reactor supplied material. The TeamBest system can use the existing, yet small, cyclotron infrastructure or with new cyclotron sites, all for a much lower incremental cost compared to alternative systems and other isotope production technologies.
About Best Theratronics Ltd

Best Theratronics Ltd. has been manufacturing, marketing, selling and servicing cobalt-based cancer therapy systems for more than 50 years. It began as a division of Atomic Energy of Canada Limited. The company is located in Ottawa, Ontario, Canada, and its 160 employees cover expertise in manufacturing, engineering, design, radiation physics, dosimetry, worldwide logistics, sales, marketing and service. Find out more at www.theratronics.com.
About Best Medical International

Best Medical International has served the medical community with the highest quality products and unparalleled customer service for more than 35 years. Best Medical International, headquartered in Springfield, Virginia, USA, encompasses a family of medical companies known as TeamBest, with a proven track record of innovation, quality and service. Find out more at www.teambest.com.
©

Future prospects for proton therapy

"Don't treat tomorrow's patients with yesterday's proton therapy technology." This was the opening observation from Marco Schippers, speaking at last week's ICTR-PHE meeting in Geneva, Switzerland. Schippers, from the Paul Scherrer Institute (PSI) in Switzerland, emphasized the necessity of developing novel proton therapy techniques, citing a wish list of "five highs": higher quality, higher accuracy, higher flexibility, higher intensity and higher energy. He also listed one low: lower equipment costs – generally achieved via a reduction in the size of the accelerator system.

To increase the quality of dose delivery, Schippers recommended that "in future, everyone should move to pencil-beam scanning". Currently, this technique – in which a narrow pencil beam is magnetically deflected to paint the dose throughout the target – is only used by PSI and a small number of other sites. Meanwhile, every other proton therapy centre in the world still employs passive scattering.

Pencil-beam scanning is more efficient than beam delivery via scattering, and also offers the highest flexibility for shaping the dose distribution. However, it is inherently more sensitive to organ motion during treatment. Interplay effects between the motion of the target and the proton beam can lead to hot and cold spots in the target volume. So how can the accuracy of proton dose delivery be improved?

Schippers detailed several potential approaches: gating, in which the beam is only applied at certain points in the breathing cycle; adaptive scanning, in which the pencil beam is moved to track the organ motion (although this is only in the research stage and not used yet); and fast rescanning, where the target volume is painted multiple times to average out motion effects. This latter approach requires high scanning speeds, which can be achieved by PSI's state-of-the-art Gantry 2. PSI is also investigating fast 3D scanning, in which the beam intensity is also rapidly modulated during the beam sweep.

One other option for increasing the beam delivery accuracy is integrating MRI (magnetic resonance imaging) guidance with proton therapy – such as is being developed for photon-based treatments. "I think that this is one of the things that we should go for in the future," Schippers said.
Future-proof

The third item in Schippers' wish-list was high flexibility - both in the treatment dynamics and in the equipment itself, which represents a huge investment that must be future-proof and upgradeable. "A cyclotron is the ideal accelerator for maximum flexibility," he told delegates, citing benefits including a continuous beam, high reliability and rapidly adjustable beam intensity. The 250 MeV cyclotron at PSI, for example, can modify beam intensity with 3% accuracy in just 50 μs.

The disadvantage of the cyclotron is that, in contrast to a synchrotron, it produces a beam at a single energy. Altering the beam energy requires external regulation by a degrader. The PSI system can be adjusted between 238–70 MeV, with 1% field changes (or 5 mm change in penetration depth) in 50–80 ms. Increasing the beam intensity, meanwhile, to 1–1.5 µA, would enable splitting of the beam between multiple treatment rooms. This would allow more than one gantry to be used at one time, greatly increasing patient throughput.

Schippers went on to discuss the issue of higher proton energy, and why one would actually need this. One key application is proton radiography, as protons with an energy of 350&nbp;MeV will travel straight through the patient. "The best way to measure the range of protons in a patient is by measuring the energy loss of protons in a patient," he explained.

Increasing the proton energy will also sharpen the edge of the dose distribution, as the beam spreads less, which could prove beneficial in the treatment of very small lesions. PSI is currently working to develop such a high-energy system, by adding a linac based on a design of the TERA Foundation (Italy) to the existing beam transport system in order to boost proton energy from 250 to 350 MeV (the ImPulse project).
The one low

Finally, Schippers took a look at proton therapy's inescapable need to lower costs. Ultimately, this will be achieved via the development of smaller accelerators that can fit into a single treatment room.

The size of a cyclotron can be reduced by increasing the magnetic field. However, at very strong fields, the field weakens towards the cyclotron's outside edge. To mitigate this effect, synchrocyclotron systems in which the frequency of the driving field is adapted with radius are being investigated. This arrangement is exploited in Mevion's S250 system and IBA's Proteus ONE, both of whom announced first installations of their systems towards the end of last year. Around this time, installation also commenced of ProTom's Radiance 330, a compact synchrotron system.

Looking further ahead, there's the dielectric-wall accelerator, which could be small enough to be mounted on a rotating gantry. And at the very end of Schippers' usability time scale of "now, up until mañana", sits the fixed-field alternating gradient accelerator (FFAG), the laser-driven accelerator and the plasma wakefield accelerator.

Schippers ended his presentation with a note of caution. "Smaller is better; but can we achieve the same quality as we can with the current bigger system?" he asked. "I'm not saying don't do it, but just be very careful."

About the author
Tami Freeman is editor of medicalphysicsweb.
©